

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	E
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1
SESSION: JULY 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND OF	PPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER
EXAMINER(S)	MR. DAVID NANHAPO
MODERATOR:	PROF. HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly
4.	All written work must be done in blue or black ink and sketches can
	be done in pencil
5.	No books, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 13 PAGES

(Including this front page, pKa Chart and Periodic Table)

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions in this section. Each question carries
 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1.1 What is the IUPAC name for the structure below?

- A. 3-ethyl-4-methyl-2-hexanol
- B. 2-ethyl-1,3-dimethyl-1-heptanol
- C. 4-ethyl-3,5-dimethyl-5-hexanol
- D. (1-hydroxyethyl)-3-methylhexane
- 1.2 List the following compounds in the order of increasing acidity.

C. CH₃OH

- A. A; B; C; D
- B. A; C; B; D
- C. A; C; D; B
- D. D; C; A; B
- 1.3 Give the IUPAC name for the following compound.

- A. (Z)-2,3,6-trimethyl-2-heptene
- B. (Z)-2,3,6-trimethyl-3-heptene
- C. (E)-2,3,6-trimethyl-3-heptene
- D. (E)-2,3,6-trimethyl-2-heptene

1.4 Does the equilibrium of this reaction lie to the left or right?

- A. Left
- B. Right
- C. It cannot be determined
- D. The forward and reverse reactions are equally favoured.

1.5 Which is the order of increasing acid strength of the following compounds?

- A. I, III, II, IV
- B. IV, III, II, I
- C. II, I, III, IV
- D. IV, III, I, II
- E. III, IV, II, I

1.6 Identify the following compounds as R or S.

- A. S, S, R
- B. S, R, S
- C. R, S, S
- D. S, S, S
- E. R, R, R

1.7 How many stereogenic centres does the addictive drug heroin have?

- A. 4
- B. 5
- C. 6
- D. 7
- 1.8 Consider the three isomeric alkanes *n*-hexane, 2, 3-dimethylbutane, and 2-methylpentane. Which of the following correctly lists these compounds in order of increasing boiling point?
 - A. 2, 3-dimethylbutane < 2-methylpentane < n-hexane
 - B. 2-methylpentane < *n*-hexane < 2, 3-dimethylbutane
 - C. 2-methylpentane < 2, 3-dimethylbutane < n-hexane
 - D. n-hexane < 2-methylpentane < 2, 3-dimethylbutane
 - E. n-hexane < 2, 3-dimethylbutane < 2-methylpentane
- 1.9 Among the butane conformers, which occur at energy minima on a graph of potential energy versus dihedral angle?
 - A. gauche only
 - B. eclipsed and totally eclipsed
 - C. gauche and anti
 - D. eclipsed only
 - E. anti only
- 1.10 Given the following substitution reaction, what would the effect be of changing the solvent from ethanol to DMSO?

 $CH_3(CH_2)_5Br$ + NaOH \longrightarrow $CH_3(CH_2)_5OH$ + Br

- A. The rate would increase because S_N2 reactions favour a polar aprotic solvent
- B. The rate would decrease because S_N1 reactions favour a polar protic solvent
- C. The rate would not be affected by the change in solvent.
- D. The potential change cannot be predicted

	A) NH_2 B) C1 C) CH_3 D) OH
A. B. C. D.	
1.12 V	hich of the following compounds will react most rapidly with HCI?
B. C. D.	5-methyl-1-hexene 4-methyl-1-hexene (E)-5-methyl-2-hexene (E)-2-methyl-3-hexene 2-methyl-2-hexene
1.13 V	hich of the following is the strongest nucleophile in polar protic solvents?
	A) F B) CH ₃ O C) HO D) CH ₃ S
A. B. C. D.	
1.14 V	hat is the major product from the acid-catalyzed hydration of 2-methyl-2-pentene?
A.	2-methylpentane
В.	2-methyl-1-pentanol
C.	2-methyl-2-pentanol
D.	2-methyl-3-pentanol
E.	1-methoxypentane
1.15 G	ve the product for the reaction of 1-butene with methanol in the presence of acid.
A.	1-ethoxybutane
В.	2-ethoxybutane
C.	1-methoxybutane
D.	2-methoxybutane
E.	1-butanol

1.11 Which of the following anions is the best leaving group?

- 1.19 Which of the following statements is (are) true about an E2 elimination reaction?
 - A. It is fastest with 3° Halides
 - B. It exhibits second-order kinetics
 - C. A better leaving group should make a faster reaction
 - D. All of the above are true
- 1.20 Assuming no other changes, what is the effect of doubling both the alkyl halide and the nucleophile concentrations in a S_N2 reaction?
 - A. no change
 - B. doubles the rate
 - C. triples the rate
 - D. quadruples the rate
 - E. rate is halved
- 1.21 Give the IUPAC name for the following compound.

- A. (Z)-1-bromo-2-chloro-2-ethyl-4-methyl-1-pentene
- B. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-2-pentene
- C. (Z)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
- D. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
- 1.22 Which of the following reaction conditions would result in the anti-Markovnikov addition to the alkene?

- A) H_2O/H^+ B) HBr C) HCl D) [1] BH_3 ; [2] H_2O_2/OH^-

1.23 What is the nucleophilic site in each of the following molecules?

$$C. H_2C = CH_2$$

- A) A: hydrogen; B: nitrogen; C: π electrons in bond
- B) A: oxygen; B: nitrogen; C: carbon
- C) A: oxygen; B: nitrogen; C: π electrons in bond
- D) A: oxygen; B: carbon; C: π electrons in bond

1.24 Which compound has the highest boiling point?

1.25 What is the correct stereochemical name for the following compound?

- A. (2S,3S)-2-bromo-3-chlorobutane
- B. (2R,3R)-2-bromo-3-chlorobutane
- C. (2R,3S)-2-bromo-3-chlorobutane
- D. (2S,3R)-2-bromo-3-chlorobutane

QUESTION 2

[10]

2.1 Give IUPAC names for the following compounds:

Note: Each question carries 2 marks.

a.

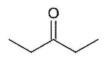
c.

d.

e.

QUESTION 3

a)


[20]

(6)

3.1 Give an IUPAC name for the following compounds

OCH₂CH₃

c)

3.2 Draw the skeletal structures of the following molecules.

b)

(6)

- (a) (4E)-2,4-dimethyl-1,4-hexadiene
- (b) cis-3,3-dimethyl-4-propyl-1,5-octadiene
- (c) trans-2,2,5,5-tetramethyl-3-hexene

3.3 Predict the products of the following reactions, showing regiochemistry and stereochemistry where necessary. (8)

(a)
$$CH_3$$
 $\frac{1. O_3}{2. Zn, H_3O^+}$? (b) $KMnO_4$ H_3O^+ ? (c) CH_3 $\frac{1. BH_3}{2. H_2O_2, -OH}$? $\frac{1. Hg(OAc)_2, H_2O}{2. NaBH_4}$?

QUESTION 4 [10]

Predict the products of the following reactions. Indicate the stereochemistry in the products when relevant.

Note: Each question carries 2 marks.

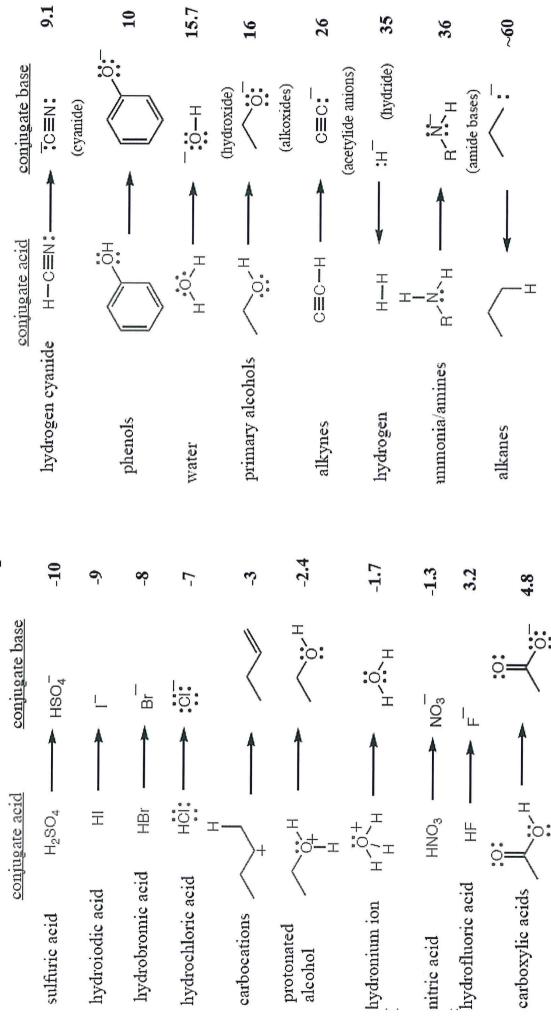
$$\underbrace{H_2O,\ H_2SO_4}$$

$$\begin{array}{c|c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$$

$$\xrightarrow{\mathsf{Br}_2}$$

QUESTION 5 [10]

5.1 Identify each of the following reactions as addition, elimination, substitution or rearrangement. (4)


(b) OH
$$\frac{Acid}{catalyst}$$
 (+ H₂O)

(d) +
$$O_2N-NO_2$$
 \xrightarrow{Light} NO_2 (+ HNO_2)

5.2 Using skeletal structures, draw a full detailed mechanism of the reaction of 1-propene with ethanol in the presence of hydrochloric acid. In order to receive full marks, show the flow of electrons using arrows and all the intermediates which are formed during the reaction. (6)

Hint: the reaction produces an alkyl halide and an ether as products

END OF EXAMINATION QUESTIONS

~	
-	ĺ
of	,
m	
-	
g	
ë	Ī

			-															_				
T T	4.0026	100	Ne	20.180	argon	٩	30 048	krypton	3	2	83.80	xenon 2 2	Xe	131.29	radon	ء و		777				
	duseine	all o	Ц	18.998	chlorine	ت :	35.453	bromine	3 0	ō	79.904	iodine 53		126.90	astatine	° <	T	(210)				
	a commo	00)dell	0	15.999	Sulfur	e U,	30.055	selenium	, U	りつ	78.96	tellurium 52	P	127.60	molod	å C	2 2	[502]				
	nitroden	7	Z	14.007	phosphorus	2 △	30.974	arsenic	3	n	74.922	antimony 51	Sp	121.76	bismuth	3 <u>0</u>	<u> </u>	208.90				
	nodroo	9	ပ	12.011	silicon	·	38.086	germanium	, כי	ט	72.61	<u>2</u> 0	Sn	118.71	lead	3 0	2 5	munauadium	114	Uud	[289]	
	donod	2	Ω	10.811	aluminium 13	2 4	26.982	gallium	ر د	ס	69.723	mdium 49		114.82	thallium 04	F	- 8	204.30				
	L							zinc	2]	65.39	cadmium 48	င်	112.41	mercury	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ב ב	unupinm	112	Jub	[277]	
								copper	ئ	5	63.546	silver 47	Ag	107.87	gold 70	2 <		nununium	111	Juni	[272]	
										_	_		Po					-				
											$\overline{}$		R					_			_	
											+		Ru	_	_		-	+			\dashv	
											4		<u>၁</u>					_			_	
											_		№	_				_				
											+	_	S S S					+"	_		\dashv	
								_					Zr									
											1		>					2			_	
								S		_	41.			ω		*		+		* *		
	Mlium	4	3e	.0122	12	Ma	4.305	alcium 20	, c	5	0.078	38	Š	17.62	_			-			226]	
r §	+	_		\dashv	_	Na N	_	_			+		-	-				\vdash			-	
- ;				9	S.		22	pota		- 6	36	∃`′ —		85	ğ	_	2 ر	fran			[5	

						1	-							
	Ianthanum	cerium	praseodymium	neodymium	promethium	Samarium	europium	gadolinium	terbium	dysprosium	holmium	erbinm	thulium	vterbium
* anthanida cariae	22	88	28	09	9	62	63	2	65	99	29	89	69	20
2	7	0	٥	7	2	8	ū	7	5	è			1	>
	7)		5		5	3	5	2	2	2			2
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93		168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium		mendelevium	nobelium
* * Actinide series	88	6	9	92	93	94	92	96	97	86	66		101	102
	Ac	£	Pa		S	Pa	Am	CH	쩛	Ç	ES	Fm	Mod	2
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]		[258]	[259]